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Abstract 
The holographic method for the completion of crystal 
structures, described in paper II [Szfke (1993). Acta 
Cryst. A49, 853-866], is implemented numerically. The 
purpose of these modest calculations is to show that 
the holographic method can handle real crystallographic 
data in easy problems and to test various algorithms 
for its implementation. Both synthetic and experimental 
data are used and sources of  error are systematically 
introduced. The numerical  experiments support the the- 
ory presented in paper II and show that the holo- 
graphic method may be a potentially viable alternative 
to conventional  methods for the complet ion of  crystal 
structures. 

Introduction 
An alternative method for the complet ion of  crystal 
structures, the holographic method, was described in 
papers I and II of  the series (SzSke, 1992, 1993). 

* This work was performed partly under the auspices of the US 
Department of Energy, under contract no. W-7405-ENG-48 (LLNL). 
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Paper II gives a detailed derivation of the method 
and a brief discussion of the algorithms used to solve 
the holographic equations, together with some of their 
mathematical properties. This paper presents modest 
first results obtained using the holographic method on 
computers. As newcomers  to crystallographic data pro- 
cessing, our aim was to place the method on a firm 
footing and to prepare for more detailed comparisons 
with established methods. Our computational  efforts 
were directed in two complementary directions. 

In the first case, we wanted to demonstrate that the 
holographic method can handle real crystallographic 
data, using slight modifications to an existing crystallo- 
graphic program. For this we chose an 'easy '  problem: 
bovine pancreatic trypsin inhibitor (BPTI), with one of  
the amino-acid side chains removed. Using two test 
cases, one employing model  data and the other experi- 
mental data, our goal was to show that the holographic 
method could correctly complete the crystal structure by 
reconstruction of  the missing side chain. 

In the second case, we performed extensive tests on 
simple ( ' toy ' )  models for crystallographic problems. Our 
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goal was to determine the stability and accuracy of the 
solutions in the presence of noise, to see how little of 
the structure can be known before the various algorithms 
fail and to find out how positivity constraints stabilize 
the solutions. 

In a subsequent paper, a fast algorithm and its use 
for large crystallographic problems will be described 
(Goodman, Sz6ke, Sz6ke, Somoza & Kim, 1993). 

1. Reconstruction of part of  a macromolecule 

Two parallel numerical experiments were performed to 
test the ability of the holographic method to complete 
crystal structures. The first of these experiments used 
synthetic data and the second used reported experi- 
mental data. The system chosen was bovine pancreatic 
trypsin inhibitor. The Cartesian coordinates and the 
experimental structure factors were obtained from the 
Brookhaven Protein Data Bank [PDB; Abola, Bern- 
stein, Bryant, Koetzle & Weng (1987)], entries 5PTI 
and R5PTISFX (Wlodawer, Walter, Huber & Sj61in, 
1984). Since this coordinate set was the result of joint 
X-ray and neutron data refinement, the H-atom positions 
were also available. The original refinement used the 
Hendrickson-Konnert restrained least-squares method 
(Hendrickson & Konnert, 1980). The X-ray and neutron 
data sets had resolutions of 1.0 and 1.8 A,, respectively. 

We used an existing crystallographic computer pro- 
gram, X-PLOR (Briinger, 1990), together with the holo- 
graphic method. Structure factors were used in their 
complex Cartesian form. X-P£OR uses the standard 
five Gaussian analytic approximation for the atomic 
scattering factors and the parameters for hydrogen were 
obtained from International Tables for X-ray Crystallog- 
raphy (1974). 

In both reconstructions (using either synthetic or ex- 
perimental reflections), the 'known' part of the struc- 
ture was taken to be the reported structure from the 
PDB entry 5PTI with the side chain of phenylalanine 
33 removed. Ordered water and a reported phosphate 
were also included in the 'known' part. The calculated 
structure factors, Fcalc [R of equation (7) of paper II] 
were generated by X-PLOR using the atomic positions, 
occupancies and Debye-Waller factors (B j) as reported 
in the PDB entry 5PTI. 

For the synthetic-data reconstruction, the 'measured' 
structure factors were taken to be the magnitudes of the 
structure factors calculated by X-PLOR for the entire 
asymmetric unit using the parameters reported above. 
For the experimental data reconstruction, Fob~ from 
the Protein Data Bank file RSPTISFX were used. In 
each case, indices for the same 3390 reflections were 
selected. The indices (h, k, l) were selected from the 
experimental X-ray data set of 17 615 reflections to give 
a resolution of approximately 2.0 A. The space group for 
this unit cell is P21212x, orthorhombic, the occupancy 
is four and the unit-cell dimensions are a = 74.10, 

b = 23.40 and c = 28.90/~ and a = / 3  = "7 = 90.0 °. 
The asymmetric unit was obtained by cutting both a and 
c in half. 

The 'elementary holograms' [see equation (15) of 
paper II] were calculated by filling the asymmetric unit 
with a uniform grid of basis functions, at a spacing ,--2 A 
on a three-dimensional lattice, and the immediate region 
around the phenylalanine 33 side chain was filled with a 
grid of spacing ,..,0.5 A. Each basis function consisted of 
a single electron and a Debye-Waller factor of 3.96 A 2 
(average coarse-lattice spacing squared), in essence, an 
H atom. Basis functions in the 0.5 A fine grid that 
duplicated those in the 2/~ coarse grid were removed. 
The total lattice consisted of 3525 points, composed 
of 1596 coarse-grid points and 1929 fine-grid points. 
The predetermined set of 3390 reflections was used and 
structure factors were generated for each point in the 
lattice. This resulted in an elementary matrix of size 3390 
× 3525, corresponding to a set of 3390 linear equations 
in 3525 variables. 

External routines were written to input the structure 
factors, compute the elementary holograms and the ele- 
mentary matrix and then solve the linear system of equa- 
tions. The routine LLSQF (IMSL Inc., 1981) was used 
to perform the QR decomposition. The computations 
were performed on a Silicon Graphics 4D/480 computer 
using a single processor. For all reconstructions, an input 
tolerance of 0.01 was used and pivoting was allowed on 
all columns. Each calculation took approximately 4 h. 
The QR decomposition included 105 columns in the 
basis for the synthetic case and 102 columns for the 
experimental case. These are essentially the numbers 
of independent parameters used in the solutions of the 
problem and show that it is highly overdetermined. The 
solutions, which represent the number of electrons in the 
vicinity of each point on the lattice (in each voxel), were 
smoothed using a 2.0/~ Gaussian spatial filter. 

The synthetic and experimental reconstructions are 
shown in Figs. 1 and 2, respectively. In each diagram, 
the contours represent the reconstructed electron density 
[equation (17) of paper II] and the stick figure is the 
reported X-ray structure of the phenylalanine 33 side 

Fig. 1. Electron density of the deleted phenylalanine 33 side chain of 
BPTI, reconstructed by the holographic method using the squares 
of structure factors computed from the solved structure. Contours 
corresponding to 0.75 e A -3 are shown. 
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chain. The data show that the holographic method was 
able to complete the crystal structure quite well. The 
synthetic-data reconstruction is clean: there is no nega- 
tive electron density and only a small amount of noise. 
The experimental reconstruction has noise bounded be- 
tween + 0.25 e A -3 and the maximum electron density is 
1.9 e A -3. Although this is not obvious from the figures, 
in both the synthetic and experimental cases the center 
of the reconstructed electron density is offset from the 
center of the ring in the direction of the fl-carbon, as 
expected. 

2. Properties of various reconstruction methods 

Two additional methods are described here for the solu- 
tion of the linearized equations of X-ray crystallography. 
All the computations described in this section used 
two simple model crystal structures. The first one was 
obtained by placing ten C atoms onto a helix. Two 
helices, placed with P21 symmetry around the z axis, 
formed an orthorhombic unit cell. The second model was 
obtained from the first by moving each of the atoms onto 
its nearest lattice point. The Cartesian coordinates of the 
atoms in the asynmletdc unit and their Bj values for both 
structures are shown in Table 1. In all calculations, the 
absolute values of the structure factors were calculated 
using equation (2) of paper II for all unique reflections 
within a resolution range d and thermal factors Bj 
consistent with the chosen resolution. This served as 
the simulated diffraction pattern. Various fractions of the 
molecule were then considered to be known and used as 
the reference in the holographic reconstruction method. 
The studies reported in this section did not use standard 
crystallographic computer programs. 

(a) Solution by singular-value decomposition 
The singular-value decomposition subroutine was ob- 

tained from LINPACK (Dongarra, Moler, Bunch & Stew- 
art, 1979). It was used in double precision on a single 
processor of a Silicon Graphics 4D/240 computer. The 
solution was obtained using equation (19) of paper II. 

Fig. 2. Electron density of the deleted phenylalanine 33 side chain of  
BPTI, reconstructed by the holographic method using experimen- 
tally measured reflections. Contours corresponding to 0.75 e A -3 are 
shown. 

Table 1. 'Known' and 'unknown" fractional atom positions 
for the spiral in one asymmetric unit 

The orthorhombic unit cell consisted of a 20/~ cube contain- 
ing 20 C atoms with P21 symmetry around the z axis. The 
Debye-Waller factor, Bj, was 6.25/~2. In any particular run, 
'unknown' atoms were selected at random. Structure (a) is the. 
original spiral and structure (b) is the spiral in which atoms are 
m o v e d  to the c loses t  gr id point .  

A t o m  (a) A t o m s  not  on  the grid (b) A t o m s  on  the grid 
n u m b e r  x y z x y z 

1 0.347 0.695 0.I00 0.3125 0.6875 0.0625 
2 0.138 0.520 0.137 0.1875 0.5625 0.1875 
3 0.185 0.239 0.174 0.1875 0.3125 0.1875 
4 0.459 o. 116 0.211 0.4375 0.0625 o. 1875 
5 0.722 0.269 0.247 0.6875 0.3125 0.1875 
6 0.747 0.561 0.284 0.6875 0.5625 0.3125 
7 0.526 0.730 0.321 0.5625 0.6875 0.3125 
8 0.276 0.624 0.358 0.3125 0.6875 0.3125 
9 0.242 0.346 0.395 0.1875 0.3125 0.4375 

10 0.469 o. 156 0.432 0.4375 o. 1875 0.4375 

The statistics of the singular values obtained when 6 
atoms out of 20 were deleted are shown in Fig. 3. 
About half the singular values are less than 10 -5 of 
the largest one. This shows clearly that the equations 
are ill conditioned for both structures in Table 1. The 
number of essentially zero singular values agrees with 
the prediction in § 3(a) of paper II. When the atoms 
are on lattice points [structure (b) in Table 1], the 
holographic algorithm is capable of an essentially perfect 
reconstruction of the missing atoms. This is impossible 
when the atoms are in general positions [structure (a)] 
but the effect on the distribution of the singular values 
was minimal, as shown in Fig. 3. The reconstruction 
was obtained to various values of the cutoff in the 
weight factor, wi, in equation (19) of paper II and was 
compared with the difference Fourier algorithm. Table 2 
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Fig. 3. The cumulative number of singular values in decreasing order for 
the model system described in Table 1. The largest singular value was 
normalized to unity. In both the structures of Table 1, half the singular 
values are essentially zero. This corresponds to a lack of information 
in the observable diffraction pattern. 
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Table 2. Comparison of the maximum numbers of electrons 
per voxel recovered with the difference Fourier algorithm 
(DF) and singular-value decomposition (SVD), with cutoff 
10 -3, when various numbers of atoms are considered to be 

unknown in the structures of Table 1 

Only the unknown atoms in an asymmetric unit are reported. 
The maxima listed are at the positions of the unknown atoms or 
at the nearest grid points. Also listed is the largest number of 
electrons appearing at incorrect positions in the reconstruction. 
The correct structure has six electrons at each atom position. 

(A) 4 out of 20 unknown atoms 

Atom (b) Atoms on the grid 
number DF SVD 

(a) Atoms not on the grid 
DF SVD 

1 0.66 2.69 0.51, 0.48 2.15, 2.14 
2 0.46 2.40 0.47, 0.36 2.51, 1.24 

Wrong 0.34 1.25 0.35 1.61 

(B) 6 out of 20 unknown atoms 

Atom (b) Atoms on the grid 
number DF SVD 

1 0.49 2.77 
2 0.52 2.84 
3 0.41 2.67 

Wrong 0.39 1.48 

(a) Atoms not on the grid 
DF SVD 
0.49 2.39, 1.94 
0.49 1.49 
0.37 2.73, 1.67 
0.47 1.51 

lists the maxima of the electron density at the expected 
positions of the missing atoms and in their close vicinity 
for the optimum cutoff of 10 -3 for the singular values. 
In general, the analysis of paper II was borne out. The 
reconstruction was quite similar to the difference Fourier 
method, but in all cases the solution with singular- 
value decomposition was less diffuse and artifacts were 
less pronounced. The difference Fourier method and 
the singular-value decomposition fail at about the same 
number of missing electrons. 

(b) Solution by non-negative least squares 
The non-negative-least-squares program was obtained 

from the SLATE C program library (Scandia National 
Laboratory, Albuquerque, NM, USA). We used the 
D WNNLS version, with the weights set to unity. The 
computer program implements the method of Lawson & 
Hanson (1974). It is based on the QR decomposition 
of the matrix Mp(h) of equation (17) of paper II. 
The program starts with an initial guess that can be 
supplied either by a difference Fourier solution of the  
crystallographic problem or by an arbitrary solution 
vector. The program finds the largest negative gradient 
consistent with the positivity constraint and then finds 
the minimum along that direction. If none of the 
components of the solution vector [n v of equation (17) of 
paper II] become negative, the program continues with 
a conjugate-gradient minimization of the square residual 
between the right- and left-hand sides of equation (17) 
of paper II, 

1~--~ ~-~nvMp(h) 12 fNNLS = -- H(h )  
h p = l  

(1) 

or, equivalently, equation (18) of paper II with all 
weights set to one. If, during the search for the minimum 
of fNNLS in (1), any one of the components of the solution 
vector becomes negative, the program sets that compo- 
nent to zero and tries to find another independent vector 
in the solution space that produces a large negative 
gradient. The program updates the QR decomposition of 
the matrix Mp(h) with the new column added and starts 
a new conjugate-gradient minimization. Generally, the 
algorithm was used iteratively: the electron density 're- 
covered' by the algorithm was considered to be 'known'. 
It was then added to the 'reference' and the procedure 
was repeated as outlined in § 2 of paper II. 

The program is efficient; it scales for our problems 
approximately as the square of the number of unknowns, 
/2.  This is somewhat surprising; naively, one would 
expect a p3 scaling. We conjecture that, in simple prob- 
lems, i.e. when the number of unknown atoms is small, 
the program finds a small subset of the available solution 
space fairly quickly so it never has to decompose a 
very large matrix. We found that the solutions obtained 
were completely insensitive to the first guess. In fact, 
the number of iterations needed was almost the same for 
a starting vector of all zeros as for that supplied by the 
difference Fourier method. Typical running time for the 
reconstruction was 5 rain using a single processor of a 
Silicon Graphics 41:)/240 computer. 

We carried out four different sets of studies. In the first 
set, we chose the same simulated structures as above and 
deleted an increasing number of atoms. As many as half 
the atoms could be deleted and a good reconstruction 
still be obtained. When the atoms were on lattice points 
[structure (b) of Table 1], a perfect reconstruction was 
obtained. It is presented in Fig. 4 together with the solu- 
tion obtained using the difference Fourier method. The 
comparison is 'unfair' because there are direct methods 
that could be used to obtain a perfect reconstruction for 
such a simple problem (l.,add & Palmer, 1985; Stout 
& Jensen, 1989; Beurskens, 1985). The pictures are 
intended to show the prominence of the dual image 
in the difference Fourier method and the ability of the 
positivity constraint to eliminate it in the holographic 
method. The computations of the holographic method are 
completely automatic and the results are quantitatively 
correct. Also, there is no inherent difficulty in extending 
the holographic method to large molecules. 

With half the atoms unknown, we studied the effect 
of displacing atoms from the lattice points. When the 
unknown atoms were left on the lattice points, the 
reconstruction succeeded to machine precision whether 
or not the known atoms were on the lattice points. 
When the unknown atoms were off the lattice points, the 
reconstruction still succeeded but was not perfect. The 
crystallographic R factor was reduced only to 24-27%, 
yet the atoms were clearly recognizable. The number 
of electrons per atom varied between four and seven, 
in contrast to the correct six, but the centers of gravity 
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of the atoms were correct to 0.4A. When 12 out of 
the 20 atoms were considered to be unknown, the 
reconstruction did not converge. 

In the rest of the studies described below, all the atoms 
were placed on grid points, so perfect recovery of them 
was, in principle, possible. In the second set of studies, 
10 atoms out of 20 were still considered to be unknown, 
but half the reflections were deleted. As expected, the 
P21 symmetry was initially lost in the reconstruction 
but eventually the reconstruction converged perfectly 
and the symmetry was regained. In the third set, all 
the reflections were retained but Gaussian noise was 
added to the 'observed' reflections. The added noise 
was proportional to the intensity of each reflection. As 
much as 30% noise could be added and a good recovery 
still be obtained. The results are shown in Table 3. 
The standard deviation of the calculated and observed 
IF2[ and the standard crystallographic R factor are both 
linearly proportional to the noise added. At 30% noise, 

Table 3. Reconstruction of 10 atoms out of 20 in structure 
(b) of Table 1 with Gaussian noise added to the 'observed' 

structure factors 

The a toms were  on grid points.  The  non-negat ive- least-squares  
a lgor i thm was  i terated to convergence.  In all cases, the recon- 
s tructed electron densi t ies  were  centered at the correct positions. 

Fractional noise Final standard 
(%) deviation Final R factor (%) 

0 1.0 x 10 -5 6.0 x 10 -6 
3 0.82 1.4 

10 2.66 4.8 
20 5.13 9.8 
30 7.55 14.1 

the R factor is 14%. In the fourth set, 12 atoms were 
deleted but the Z of one of the known atoms was 
increased. The reconstruction succeeded as long as the 
total Z of the unknown atoms stayed below 55 % of the 
total Z in the unit cell. 

-0 .2 0.0 0.2 0.4 
I 

0.~ 

la) 

1 2 3 4 
I I 

5 6 

(b) 
Fig. 4. Comparison of the electron density map recovered by (a) the difference Fourier algorithm and (b) the holographic method for the structure 

presented in Table 1 with half the atoms deleted. The figures show the electron density in successive layers of the unit cell. The holographic method 
was iterated to convergence. A non-negative-least-squares algorithm was used and the unknown atoms were on grid points. The reconstruction 
was done on a 4 x 8 x 8 grid spanning the asymmetric unit of an orthorhombic unit cell w i th /21  symmetry. 
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3. Summary 

Computer calculations have been carded out using the 
holographic method in order to complete the inter- 
pretation of X-ray crystal structures. There were two 
complementary efforts. In the first one we used the 
experimental diffraction intensities of bovine pancreatic 
trypsin inhibitor, deleted one of the amino-acid side 
chains from the solved structure and considered the 
rest of the solved structure to be known. We used 
a QR decomposition algorithm to solve the linearized 
holographic equations in order to obtain the unknown 
part of the structure. The reconstructed electron density 
is very good. The conclusion from this study is that 
the holographic reconstruction algorithm may become a 
viable alternative for the completion of crystal structures. 
In simple cases, it can be used by modifying existing 
crystallographic computer programs. The second prong 
of our computational effort was to find alternative al- 
gorithms, to establish some of the capabilities of the 
holographic method and to include some external infor- 
mation. In this paper, we have discussed the solution of 
the holographic reconstruction equations using singular- 
value decomposition and non-negative least squares. We 
have established that the equations are indeed ill con- 
ditioned and that the number of practically independent 
equations is in accordance with the theoretical discussion 
of paper II. We have also found that without additional 
information, i.e. use of the singular-value decomposition, 
the reconstructed electron density is quite similar to that 
obtained using the difference Fourier method; however, 
it is better concentrated at the positions of the missing 
atoms and has fewer artifacts. Both methods fail at about 
the same fraction of unknown atoms. The addition of 
non-negativity constraints improves the reconstruction 
dramatically. When the non-negative-least-squares algo- 
rithm was used, as many as 55 % of the electrons could 
be retrieved. We also found the retrieval to be quite 
insensitive to missing reflections and Gaussian noise. 

The computational experiments reported in this paper 
are very promising and are in good agreement with the 
theoretical discussions of paper II. However, the algo- 

rithm used for the non-negative-least-squares solution 
does not scale well with the complexity of the crystals: 
its storage requirements are proportional to ,-~ p2 and 
its nmning time is proportional to ,-~ p2 or even ,-~ p3, 
where P is the number of resolution elements in the unit 
cell. In a forthcoming paper, a fast algorithm will be 
described that can be used to solve model problems of 
magnitudes comparable to those of problems of current 
interest in macromolecular crystallography (Goodman, 
Sz6ke, Sz6ke, Somoza & Kim, 1993). 
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